mathajax

Matrix Forward and Back Substitution

A square matrix is transformed into a Lower triangular matrix L or an Upper triangular matrix U by applying elementary row operation (Gaussian elimination) for solving system linear of equations.

A solution vector X of system of linear equations is obtained by applying substitution method.

  • The forward substitution method is applied to matrix L
  • The back substitution method is applied to matrix U

lower triangular forward substitution

Algorithm steps for forward substitution to matrix L

       Input : a square matrix, A
        a non-homogeneous vector b    
       Output : Solution vector, X 
  
   read matrix A
   read vector b
   L = transform_to_L(A,b)
   X = substitute-forward(L);
  

Example of forward substitution to matrix L

substitute unknown variables top to bottom approach

           0.4286x                  = 1.7143
           3.6667x  + 2.3334y       = 10.0
           2.0x+    + 4.0y   + 6.0z = 18.0

    find x,  from equation 1     
              0.4286x   = 1.7143
              x = 1.7143/0.4286
              x = 3.999

     substitute x = 20.998 in equation 2
           3.6667(3.999)  + 2.3334y  = 10.0  
                             2.3334y  = 10.0 - 14.665
                             y = -1.9996

     substitute x = 3.999,y=-1.9996 in equation 3  
            2.0(3.999)+    + 4.0(-1.9996)   + 6.0z = 18
              7.9992    -  7.9984  + 6.0z  =  18
                                     6.0z  = 18 - 0.0008
                                     z =  17.9992 / 6 
                                     z = 2.999  

     solution vector x=3.999,y=-1.9996,z=2.999 
    

Algorithm steps for back substitution to matrix U

    Input -  a square matrix A 
             a non-homogeneous vector b     
    Output - solution vector X 

         read matrix A
         read vector b
  
         U = transform_to_U(A,b)
         X = substitute-back(U);
 

Example of back substitution to matrix U

substitute unknown variables from bottom to top approach

                    
           1.0x + 2.0y + 3.0z  = 9
                  1.0y + 2.0z  = 4
                        + 1.0z = 3

  find z,  from equation 3     
       1.0z = 3 
          z = 3

   find y, substitute z = 3 in equation 2
           1.0y + 2.0(3) =4
           1.0y = 4-6 
              y = -2      
   
  find x, substitute z=3, y=-2 in equation 1
               1.0x + 2.0(-2) + 3.0(3) = 9
               1.0x - 4 +  9  = 9   
               x = 4   
   solution vector x=4,y=-2,z=4  
  


Java programming code - Forward and Backward Substitution

 
import java.util.Arrays;
public class Substitution {

 public static double[] forward(Matrix mat,double b[]) {
  
  int nrow =mat.getNrow();  
  double sol[] =new double[nrow];
  
  for (int r=0;r<nrow; r++) 
  {
     double val =0;   
     for (int c=0;c<r; c++) {
         val =val +  sol[c] *mat.getElement(r, c);     
     }    
     val = b[r] - val;
     sol[r] = val/mat.getElement(r, r);
  }        
  return sol;
 }
 
  public static double[] backward(Matrix Umat,double b[]) {
   
  int nrow =Umat.getNrow();
  int ncol = Umat.getNcol();  
  double sol[] =new double[nrow];
  
     for(int r=nrow-1; r>=0; r--)
      {
      double val =0;
      for(int c=ncol-1;c>r;c--) {
           val =val +  sol[c] *Umat.getElement(r, c);  
        }
      val = b[r] - val;
      sol[r] = val/Umat.getElement(r, r); 
      }     
    return sol; 
 } 
 
  public static void main(String[] args) {    
   double u[][]={{1,2,3},{0,1,2},{0,0,1}};
   double b[] = {9,4,3};
  
  Matrix U = new Matrix(u);  
  System.out.println("Upper Triangular matrix U");
  System.out.println(U.toString());
  double sol[]=Substitution.backward(U, b);
  
  System.out.println("Solution of UX=b");
  System.out.println(Arrays.toString(sol));
  
                     
 double l[][]={{0.4286, 0.0, 0.0},{3.6667, 2.3334, 0.0},
                                                     {2.0,4.0,6.0}};
 double b2[] = {1.7143,10.0,18.0};
  
  Matrix L = new Matrix(l);  
  System.out.println("Lower Triangular matrix L");
  System.out.println(L.toString());
  double sol2[]=Substitution.forward(L, b2);
  
  System.out.println("Solution of LX=b");
  System.out.println(Arrays.toString(sol2));
  
 }
}

Java programming output of Forward and Backward Substitution


Upper Triangular matrix U
1.0  2.0  3.0  
0.0  1.0  2.0  
0.0  0.0  1.0  

 b vector 
 [9  4  3]

Solution of UX=b
[4.0, -2.0, 3.0]

Lower Triangular matrix L
0.4286  0.0  0.0  
3.6667  2.3334  0.0  
2.0  4.0  6.0  

 b vector 
 [1.7143 10.0 18.0]

Solution of LX=b
[3.9997666822211855, -1.9996333649183253, 2.9998333492051548]



Comments

Popular posts from this blog

Solving System of Linear Equations by Gauss Jordan Elimination

Solve System of Linear Equations by LU Decompose

Matrix Determinant by Upper Triangular Matrix

Distance Metric - Euclidean Distance