mathajax

Inverse Matrix by LU Decomposition

One of the application of LU matrix decomposition finds inverse of a square matrix,A.

A A -1 = I


The square matrix (coefficient matrix) A decomposed into LU (lower triangular and upper triangular) matrix by elementary-row-operations.

A = LU


after that, inverse matrix A -1 is found by applying forward and back substitution on each column of identity matrix, I and place returning solution vectors x to column of A -1 matrix.


Algorithm steps for Matrix Inverse by LU Decomposition

         Input : a square matrix, A         
         Output : a square matrix, A -1

         read matrix A
         [L,U]=LUDecompose(A)  
         
         [nrow,ncol]=size(A) 
         I = Identity-matrix(nrow,ncol);
         iA = zero-matrix(nrow,ncol);

         For c =1 to ncol 
          Y = forward-substitute(L,I(c))
          X = back-substitute(U,Y)
          A-1(c,:) = X    // set vector X to column of A -1
         End 
    
        print A-1, "is inverse of A"  
  

Java programming code - Matrix Inverse by LU Decomposition

 
import java.util.Arrays;
public class LUInverse {

 public static void main(String[] args) {
  
 double A [][]= {{25,5,1},{64,8,1},{144,12,1} };
    
        LUMatrix lu=new LUMatrix(A); 
        lu.decompose();
        Matrix L= lu.getL();
        Matrix U = lu.getU();
        int rc[] = lu.roworder();
        
        System.out.println("Lower Triangular Matrix L");
        System.out.println(L.toString());
        
        System.out.println("Upper Triangular Matrix U");
        System.out.println(U.toString());
        
        System.out.println("Row Order Change");
        System.out.println(Arrays.toString(rc));
        
                
        System.out.println("verify that Matrix A = LU");
        System.out.println(MatrixOpr.multiply(L, U).toString());
                        
       
       double I[][] = {{1,0,0},{0,1,0},{0,0,1}};       
       double A1[][] = new double[L.getNrow()][L.getNcol()] ;
                       
        for (int r=0;r<L.getNrow();r++) {
           double Y[]=Substitution.forward(L, I[r]);           
           double X[]=Substitution.backward(U, Y);           
           for (int c=0;c<X.length;c++)
              A1[c][rc[r]] = X[c];                   
        }
        
        System.out.println("Matrix A Inverse");        
        System.out.println(new Matrix(A1).toString());
        
        System.out.println("prove that Matrix A*A-1 = I");
        System.out.println(MatrixOpr.multiply(new Matrix(A), 
                                      new Matrix(A1)).toString());             
 }
}


 

Java program output of Matrix Inverse by LU Decomposition


Matrix A
25   5   1  
64   8   1  
144  12  1

Lower Triangular Matrix L
1.0  0.0  0.0  
0.4444444  1.0  0.0  
0.1736111  1.09375  1.0  

Upper Triangular Matrix U
144.0  12.0  1.0  
0.0  2.66666  0.55555
0.0  0.0  0.2187499  

Row Order Change
[2, 1, 0]

verify that Matrix A = LU
144.0  12.0  1.0  
64.0  8.0  1.0  
25.0  5.0  0.9999999  

Inverse of Matrix A 
0.047619047619047644  -0.08333333333333336  0.035714285714285726  
-0.9523809523809529  1.4166666666666672  -0.4642857142857144  
4.571428571428574  -5.000000000000003  1.4285714285714293  

prove that Matrix A*A-1 = I
1.0000000000000004  -8.881784197001252E-16  4.440892098500626E-16  
0.0  1.0  4.440892098500626E-16  
8.881784197001252E-16  8.881784197001252E-16  1.0000000000000004  



Comments

Popular posts from this blog

Solving System of Linear Equations by Gauss Jordan Elimination

Matrix Forward and Back Substitution

Solve System of Linear Equations by LU Decompose

Matrix Determinant by Upper Triangular Matrix

Distance Metric - Euclidean Distance