mathajax

Solving System of Linear Equation by Gaussian Elimination

Solving linear equation by matrix inverse method is difficult when a system has more than 3 equations and 3 unknown variables. hence, Gaussian elimination is preferred for solving system of linear equations, which has N linear equations and N unknown variables.

Gaussian elimination is performed by two steps. they,

system of linear equations

System of Linear Equation by Gaussian Elimination - algorithm

                Given - system of Linear equations               
              
                represents it in matrix form -:
                       A  - coefficient matrix  
                       X  - unknown vector
                       b  - non-homogeneous vector     

                form augmented matrix, A|b
                 
                convert augmented matrix, A|b into upper triangular matrix, U
                       by row operation 

                          U = A|b                 

               to get solution vector for X 
                   apply back substitution on triangular matrix, U   
               
       

Example for System of Linear Equation by Gaussian Elimination

Given System of Linear Equation \[\begin{array}{c} 2.0x+4.0y+6.0z=18 \\ 4.0x+5.0y+6.0z=24 \\ 3.0x+1y-2.0z=4 \end{array} \] Augmented matrix A|b \[ \left[\begin{array}{rrr|r} 2.0 & 4.0 & 6.0 & 18.0 \\ 4.0 & 5.0 & 6.0 & 24.0 \\ 3.0 & 1.0 & -2.0 & 4.0 \end{array} \right] \] Swap rows R0 and R1 \[ \left[\begin{array}{rrr|r} 4.0 & 5.0 & 6.0 & 24.0 \\ 2.0 & 4.0 & 6.0 & 18.0 \\ 3.0 & 1.0 & -2.0 & 4.0 \end{array} \right] \] R1<- -0.5R0+R1 \[ \left[\begin{array}{rrr|r} 4.0 & 5.0 & 6.0 & 24.0 \\ 0.0 & 1.5 & 3.0 & 6.0 \\ 3.0 & 1.0 & -2.0 & 4.0 \end{array} \right] \] R2<- -0.75R0+R2 \[ \left[\begin{array}{rrr|r} 4.0 & 5.0 & 6.0 & 24.0 \\ 0.0 & 1.5 & 3.0 & 6.0 \\ 0.0 & -2.75 & -6.5 & -14.0 \end{array} \right] \] R2<- 1.833R1+R2 \[ \left[\begin{array}{rrr|r} 4.0 & 5.0 & 6.0 & 24.0 \\ 0.0 & 1.5 & 3.0 & 6.0 \\ 0.0 & 0.0 & -1.0 & -3.0 \end{array} \right] \]

Upper Triangular matrix

\[ \left[\begin{array}{rrr|r} 4.0 & 5.0 & 6.0 & 24.0 \\ 0.0 & 1.5 & 3.0 & 6.0 \\ 0.0 & 0.0 & -1.0 & -3.0 \end{array} \right] \]

Back substitution

\[\begin{array}{c} 4.0x+5.0y+6.0z=24 \\ 0.0x+1.5y+3.0z=6.0 \\ 0x+0y-1.0z=-3.0 \end{array} \] find z from equ 3 \( 0x+0y-1.0z=-3 \) $$-1.0z = -3.0 $$ $$z = {-3.0/-1.0}$$ $$z =3 $$ find y from equ 2 \( 0x+1.5y + 3.0z=6.0\) and z=3 $$1.5y+3.0z = 6.0. $$ $$1.5y + 3.0(3) =6.0 $$ $$y = (6.0 -9)/1.5 $$ $$y = -2 $$ find x from equ 1 \( 4.0x+5.0y+6.0z=24\) and z=3,y=-2 $$4.0x+5.0y+6.0z=24 $$ $$4.0x+5.0(-2)+6.0(3)=24 $$ $$4.0x =24 + 10 -18 $$ $$x = 16/4.0 = 4.0 $$ Solution of Equations [x=4.0, y=-2.0, z=3.0]

Gaussian Elimination by Java programming

The Java program finds solution vector from system of linear equations using Gaussian elimination method. It has the following member functions by which the solution vector is found.

  • GaussainElimiation - it is a constructors of the class, converts array of elements into augmented matrix.

  • uppertriangular - it makes augmented matrix into upper triangular matrix using elementary matrix row operations.

  • backsubsitute - it carry outs back substitution method on upper triangular matrix.

  • soultion - it finds a solution vector for linear equations by comprising above member functions upper-triangular and back-substitute method.
 
import java.util.Arrays;
public class GaussianElimination {

 Matrix mat;
 
 public GaussianElimination(double A[][],double b[]) {  
  int row=A.length;
  int col=A[0].length;
  
  mat = new Matrix(row,col+1);
  for(int r=0;r<row;r++) {
   for(int c=0;c<col;c++) 
        mat.setElement(r, c, A[r][c]);    
  }
  
  for(int r=0;r<row;r++) 
   mat.setElement(r, col, b[r]);  
 }
  
 public int maxpivot(int c) {
    
  int mr=c; double mx=0;
  for(int r=c;r<mat.getNrow();r++) 
  { 
   if (   mat.getElement(r, c) > mx ) {
      mx = mat.getElement(r, c);
      mr = r;
   }
  }
  return mr;
 }
  
 public void backsubsitute(int r,double sol[]) {
  
  double val =0;
  for(int c=mat.getNcol()-2;c>r;c--) {
    val =val +  sol[c] *mat.getElement(r, c);  
  }
  
    val = mat.getElement(r, mat.getNcol()-1) - val;
    sol[r] = val/mat.getElement(r, r);
          
 }
 
     public void uppertriangular() {  
  for(int r=0;r<mat.getNrow()-1;r++) 
    {    
             int mr = this.maxpivot(r);
      if ( mr != r)
      RowOperation.swap(mat, r, mr);        
      for(int r2=r+1;r2<mat.getNrow();r2++) 
  {
    double ratio= mat.getElement(r2, r) / mat.getElement(r, r);
    RowOperation.add(mat, r2, r, -ratio);
  }
     }    
 }

 
 public double[] solution()
 {      
  double sol[]=new double[mat.getNrow()];
  System.out.println("Augmented matrix");
  System.out.println(mat.toString());
  
  this.uppertriangular();    
           System.out.println("Upper Triangular matrix");
  System.out.println(mat.toString());
     
        for(int r=mat.getNrow()-1;r>=0;r--) {            
           backsubsitute(r,sol) ;            
     }           
     return sol;
  
 }
   
 public static void main(String[] args) {
  
  double A[][]= { {2,4,6},{4,5,6},{3,1,-2}};
  double b[]= {18,24,4};
  
  GaussianElimination  ge= new GaussianElimination(A,b);
  double solution[]=ge.solution();
  
  System.out.println("Solution of Equation");
  System.out.println(Arrays.toString(solution));

 }

}
 

Gaussian Elimination Java programming Output


Augmented matrix 
2.0  4.0  6.0  18.0  
4.0  5.0  6.0  24.0  
3.0  1.0  -2.0  4.0  

Upper Triangular matrix 
4.0  5.0  6.0  24.0  
0.0  1.5  3.0  6.0  
0.0  0.0  -1.0  -3.0    

Solution of System of Linear Equation 
[4.0, -2.0, 3.0]

Comments

Popular posts from this blog

Solving System of Linear Equations by Gauss Jordan Elimination

Matrix Forward and Back Substitution

Solve System of Linear Equations by LU Decompose

Matrix Determinant by Upper Triangular Matrix

Chebyshev distance between two points